снком. 6361

THIN-LAYER CHROMATOGRAPHY OF CHLORPROMAZINE METABOLITES

ATTEMPT TO IDENTIFY EACH OF THE METABOLITES APPEARING IN BLOOD, URINE AND FECES OF CHRONICALLY MEDICATED SCHIZOPHRENICS*

P. TURANO" AND WM. J. TURNER

Research Division, Central Islip State Hospital, Central Islip, N.Y. 11722 (U.S.A.)
AND

A. A. MANIAN

Psychopharmacology Research Branch, National Institute of Mental Health, Rockville, Md. 20852 (U.S.A.)

(First received August 25th, 1972; revised manuscript received September 13th, 1972)

SUMMARY

Data are presented for thin-layer chromatographic behavior of chlorpromazine and thirty-five of its metabolites, as well as for the thin-layer chromatographic behavior of forty-two still unidentified metabolites found free or as glucuronides in plasma, erythrocytes, urine or feces. Tables are given on the frequency of occurrence of each compound in each source. The presence and identification of several new phenothiazine metabolites and their methoxylated analogs are reported.

INTRODUCTION

Central Islip, N.Y. 11722, U.S.A.

The metabolic fate of chlorpromazine (CPZ)*** has been explored with increasing specificity and precision since 1954^{1,2}. The possibility that its metabolism would be related to its clinical effects has always been under consideration. Forrest *et al.*³ have calculated that there are a theoretical 168 metabolites derived by formation of sulfoxides, by hydroxylation, by N-oxidation, by mono- and didesmethylation, by oxidation of the side-chain and by conjugation with glucuronic acid of with sulfate. Posner *et al.*⁴ raised the possibility that oxidation at positions 3 and 8, as

*** For abbreviations of the various phenothiazine derivatives studied, see APPENDIX.

^{*} This work was supported in part by NIMH Grant No. 18465.
** Address reprint requests to P. Turano, Research Division, Central Islip State Hospital,

well as dihydroxylation, might occur. DALY AND MANIAN⁵ reported on the evidence for occurrence of O-methylation of one of the two hydroxy groups in 7,8-di-OH-CPZ. GOLDENBERG AND FISHMAN⁶ have reviewed the field up to 1970.

For the separation, identification, and quantification of the individual metabolites, thin-layer chromatography (TLC) has become the technique of widest applicability, which moreover permits gas chromatography and mass spectrometry on the isolated compounds. This report summarizes the chromatographic data on 35 standards of phenothiazines, each of which is a proven or potential metabolite of chlorpromazine or promazine, and compares this with the chromatographically located metabolites found, during several years of work, in blood, urine, and feces of chronic schizophrenics on chlorpromazine and no other drugs.

EXPERIMENTAL

Materials

Standards were generously supplied by the Psychopharmacology Research Branch, National Institute of Mental Health, and by J. Cymerman Craig, Ph.D. of the School of Pharmacy, San Francisco Medical Center, San Francisco, Calif.

Blood, urine and feces of chronic schizophrenics were obtained in the course of therapy with chlorpromazine as Thorazine® liquid concentrate.

TLC materials have been previously described. TLC plates of various manufacturers have been used from time to time but this report will deal only with Brinkmann F_{254} Silica gel plates, 250 m μ thick, 20 \times 20 cm.

Methods

Blood plasma and erythrocytes have been separately extracted by methods previously described⁷⁻⁹.

Urine, collected in glass, frozen at once and stored at -10 to -20° until analysis, has been treated in a variety of ways. In every instance individual specimens were analyzed for non-phenolic and phenolic metabolites according to a previously published method¹⁰ and an aliquot taken for extraction contained 5 μ moles of total metabolites. In some instances apple-jacked urine was extracted. No material which had been subjected to adsorption on charcoal or ion-exchange resin was used in preparing this report. To obtain all of the identifiable metabolites from urine it was essential to conduct extraction serially at various pH levels; adequate extractions were made first with three volumes of dichloromethane (DCM) at pH 12 thrice, then at pH 8.5 with three volumes of DCM-isoamyl alcohol (98.5:1.5) (DCMI), and finally thrice at pH 2 with three volumes of DCM. These extractions were followed by hydrolysis. β -Glucuronidase (Ketodase, Warner-Chilcott) for 48 h permitted total extraction by DCM of the remaining metabolites, first at pH 12, then at pH 8.5 with DCMI. Traces of further acidic metabolites were occasionally found at pH 2, paricularly in apple-jacked concentrates¹¹.

Plasma has been extracted by the method of $CURRY^{12}$, by the same method modified by use of DCM, or by ether extraction, both before and after β -glucuronidase hydrolysis. Extracts have been prepared at pH 12, 10, 9 and 8.5. Within these variations no real qualitative differences have been found. Quantitatively, no higher

yields of CPZ and each of the metabolites present have been recovered than at pH 9-9.5 with DCMI.

Erythrocytes have been hemolyzed and extracted also in a variety of ways, including the ether method of Zingales^{13,14}, both before and after β -glucuronidase hydrolysis.

Feces have been extracted by ethanol and ether until a further extraction yields no color reaction with $10^{-3} M$ FeCl₃ in 18 N H₂SO₄, and when no other means of extraction, before or after hydrolysis, produces a substance acting like a phenothiazine. Separation from non-phenothiazine compounds has been carried out in a variety of ways, which we propose to report on at a later date.

In every instance, extracts have been finally brought into methanol or ethanol

TABLE I AVERAGE R_F range of CPZ derivatives Compounds identified by number, see Appendix.

Compound	Solvent			
	7	111	11	111
After two-di	mensional chro	malography		
t	0.33-0.42	0.6 -0.68	0.26-0.32	0.73-0,80
2	0.22 - 0.28	0.38-0.44	0.20	0.55-0.6
3	0.17-0.20	0.35-0.43	0.14-0.17	0.45-0.5
4	0,08	0.2 -0.25	0.08-0.1	0.26-0.30
5	0.54-0.6	0.5 -0.6	0.46-0.50	o,6 -0,8
6	0.42-0.46	0.20-0.35	0.35-0.38	0.46-0.48
7	0.04	0.2 -0.24	0.02-0.00	0.2 -0.25
8	0.02	0,08-0,12	0.02-0.04	0.16-0.20
9	0.39-0.42	0,54-0,56	0.26-0.34	0.50-0.62
10	0.20-0.22	0.25-0.28	0.20-0.25	0.22-0.27
11	0,11-0,14	0,29	0.11-0.15	0.27-0.33
12	0.06-0.07	0.02-0.07	80,0-00,0	0.05-0.09
13	0.18-0.51	0.42-0.45	0.43-0.48	0.4 -0.5
14	0.38-0.42	0.1 -0.12	0.38-0.43	0.08-0.12
10	0.39-0.12	047	0.27-0.33	0.47-0.51
After one-di	mensional chro	omalography		
15	0.28-0.32		0.30-0.34	0.77-0.81
17	0.27-0.33		0.18-0.22	streak
t Š	0.27-0.33		0.27-0.33	0.43-0.48
19	0.27-0.33		0.27-0.33	0.26-0.30
20	0.25-0.3		0.28-0.33	0.76-0.80
21	0.25-0.3		0.26-0.3	streak
22	0.27-0.31		0.28-0.32	0.77-0.81
23	0.17-0.22		0.14-0.19	0.20-0.25
24	0.4 -0.45		0.47-0.52	0.25-0.3
25	, ,,		0.78-0.83	0.77-0.82
26			0.77-0.81	0.1-80.0
27			0.50-0.55	0.95-1.0
28			0.84-0.89	0.95-1.0
29	0.83-0.87		0.75-0.8	0.93-0.98
30	0.08-1.0		0.85-0.9	0.98-1.0
31	0.1-80.0		0.98-1.0	0.98-1.0
32	0.00-0.13		0.02-0.04	0.40-0.45
33	0.95-0.98		0.78-0.82	0,08-1,0
34			0,60-0,65	0.80-0.85
35	0,88-0.92		0.87-0.91	0.05-1.0

for spotting on TLC plates, as has been described by Turano and Turner. Best separations were obtained by development in two dimensions with the following solvent systems: (I) Acetone-methanol-triethanolamine (100:30:1); (II) acetone-methanol-ammonia (100:40:1); (III) isopropyl-alcohol 95% ethanol-ammonia (11:1:1). Solveuts I and II were first dimension alternates. Solvent III was used for the second dimension.

Identification has been in the first instance dependent upon use of synthetic standards run side-by-side with unknowns. Occasionally a standard has been added to an aliquot of unknown, particularly when a spot suggested presence of two components. Metabolites have been calculated as R_F values in the usual way, as well as with reference to an internal standard, R_S .

Examination of plates has been by direct examination in visible and under UV light before and after spraying with the alcohol-H₂SO₄-FeCl₃ reagent of Wechsler and Forrest¹⁵ and after heating the sprayed plates.

In some instances gas chromatography (GC) has been used in parallel with TLC to follow the breakdown of highly unstable compounds such as 7,8-di-OH-CPZ.

TABLE II MOBILITIES ON SILICA GEL TLC PLATES OF CPZ AND 35 METABOLITES RELATIVE TO EACH OF THE FOUR INTERNAL STANDARDS (R_{θ})

Sec	APPENDIX	for	compound	correspond	ling	to	cacl	ı numb	er.
-----	----------	-----	----------	------------	------	----	------	--------	-----

Compound		Rerz	,		R7.01	-c12		R7-011	-crzs	י י	R7-01	-NorgC	PZSO
	Solvent	I	11	III	I	11	111	I	11	111	I	11	111
ī	r vaga s Anti s, december de roje, deless di gibres differenden i de resta e				1.03	0.94	1.37	3.1	1,6	3,86	1,9	0.71	10.63
2		0.71	0.69	0.67	0.9	0.05	0.92	2.2	1.1	. 2.59	0.85	0.49	7.12
3		0.9	0.53	0.55	0.93	0.5	0.76	2.8	0.85	2.1.4	1.08	0.38	5.88
4		0.55	0.28	0.27	0.57	0.26	0.37	1.7	0.45	1.05	0,65	0,2	2.88
5		1.87	1.56	0,66	1.93	1.47	0.90	5.8	2.5	2.55	2,23	1.1	7.00
ō		1.32	1.19	0.32	1.37	1.12	0.44	4.1	1.9	1.23	1.58	0.84	3.38
7		0.16	0.13	0.28	0.17	0.12	0.39	0.5	0.2	1,09	0,19	0,00	3.00
8		0,06	0,06	0.12	0.07	0.06	0.16	0.2	O, I	0.45	80,0	0.04	1.25
9		0.97	00.1	0.73	•			3.0	1.7	2.82	t, 15	0.76	7.75
10		0.32	0.63	0.26	0.33	0.59	0.35				0,38	0.44	2.75
T. I.		0.42	0.47	0.32	0.43	0.44	0.43	1.3	0.75	1.23	0,5	0.33	3.37
12		0.19	0.19	0.06	0.2	81.0	0.08	0,6	0,3	0.23	0.23	0.13	ი,ნვ
13		1.29	1.69	0.4	1.33	1.59	0.55	4.0	2.7	1.54	1,54	1.2	4.25
1.4		0.84	1.4	0.09	0.87	1.3	0.13	2.6	2.3	0,36			
1Ģ		0.97	1.03	0.6	0,1	0.97	0,8	3.0	1.65	2.3	1.15	0.73	6.38
30		3.23	2.72	1.18	3.3	2.50	1,61	0,01	4.35	4.55	3.85	1.93	12.5
31		3.25	3.13	1.18	3.3	2.94	1.6	10.0	4.35	4.55	3.85	1.93	12.5
33		3.1	2.5	1.18	2.8	2.35	1.6	ე,ნ	4.0	4.5	3.7	1.78	12.5
32		-	0.06			0.00			0.1			0.0.4	
17			ი,იი			0,06			o. t			0.04	
23			0.5			0.47			0,8			0.36	
22			0.94			0,88			1.5			0.67	
18			0.9.			0.88			1.5			0.67	
19			0.9.4			0.88			1.5			0.67	
20			0.97			0.91			1.55			0.69	
21			0.88			0.82			1.4			0,62	
15			1.0			0.94			ı,Ġ			0.71	
24			1.53			1.44			2.45			1,09	
29			2.43			2.29		•	3.9			1.73	
35			2.78			2,62			4.45			1.98	

RESULTS

Table I lists the R_F values in each of the three solvent systems described above of all 35 synthetic phenothiazines which we had available. Table II lists mobilities for the non- and monohydroxylated compounds, relative to an internal standard (R_s) in each of the three solvents (the standards were CPZ, 7-OH-CPZSO, and 7-OH-Nor₂CPZSO); and for the dihydroxylated substances their R_s in Solvent II.

Some standards and their derivatives changed character more or less rapidly in solution. Tables III and IV condense results of examinations of these unstable compounds, chiefly by recording observations: (I) in long and short wave UV before spraying with any reagent; (2) by color of each spot in visible light before and after spraying with the color developing reagent described above, but before heating; and (3) by color in visible light after heating the sprayed plate.

Table IV, which details the characteristics of each of the metabolic compounds, is an appalling sight, but workers with these compounds must experience vast frustration and confusion, which this table may alleviate. This table requires some explanation. The pure compounds were dissolved in absolute ethanol previously purged with N_2 . The solutions were immediately spotted under N_2 and run in sandwiches, and again spotted at intervals of hours or days thereafter. Each standard was made up repeatedly, with or without N_2 , spotted with or without N_2 . All were run in the dark, at temperatures varying from 22° to 30°. Previous work had revealed no effects on R_F , on resolution, or breakdown of other standards by change of room temperature or humidity.

On the first run of the dihydroxylated compounds a variable number of spots appeared, and these tended strongly to increase in number and intensity on the first 24-48 h, even with the solution maintained at -20° in the dark. Further, the presence of the unstable compounds are given in Table IV, columns 2 and 3. In columns 2 and 3 are also given the R_F values in Solvent I (first dimension) and Solvent III (second dimension). Each value throughout the table is the average of at least five chromatographic runs. Columns 4 and 5 give the mobilities referred to CPZ (R_8), columns 6 and 7 to (9)*; 8 and 9 to (10); and 10 and 11 to (14). The colors given under column 1 refer to color in visible light after heating the sprayed plate. LUV refers to a spot, usually fluorescent, seen under long wave UV before heating. Superior a indicates the main spot due to parent compound. SF refers to solvent front. Frequently a spot other than that due to the parent compound was seen only once or twice in five or more experiments; these are identified by the symbols 1×0.000

Table V provides data on GC of the unstable compounds. GC was carried out with a Packard gas chromatograph**, 8-ft. glass column, packed with 3% OV-17 using N_2 as carrier gas, and a flame ionization detector. It was programmed to start at 250° for 1 min, then to rise 2.5°/min to maximum 285°, and hold. Sensitivity was $I \times Io^{-10}$. Twice the runs were made as soon as the standard was prepared in ethanol; a third time the run was made 8 days later. Major peaks are underlined. It appears

^{*} Numbers in brackets refer to the numbered compounds in the APPENDIX.

^{**} Dual flow controller, Model 824, temperature point programmer Model 846, deviation temperature controller Model 873, dual electrometer Model 843, and Dual Bipolar HV Supply Model 834.

TABLE III

Ξ
9
ب
s
N
3
20
ĸ
×
ME
Ö
Z
OE
2
E
•
TEC
Ö
74.
F CPZ
s of CP
IVES OF CP
ES OF (
ES OF (
ES OF (
DERIVATIVES OF (
ES OF (
DERIVATIVES OF (
DERIVATIVES OF (
DERIVATIVES OF (
S OF DIHYDRONY DERIVATIVES OF C
S OF DIHYDRONY DERIVATIVES OF C
DERIVATIVES OF (
S OF DIHYDRONY DERIVATIVES OF C
S OF DIHYDRONY DERIVATIVES OF C
ARACTERISTICS OF DIHYDRONY DERIVATIVES OF (
ARACTERISTICS OF DIHYDRONY DERIVATIVES OF (
S OF DIHYDRONY DERIVATIVES OF C

Compound	Long wave UF	Solvent I				Solvent III		
		Visible before spray	After spray and before heat	After spray and after heat	Long wave UV	Visible before spray	After spray and before heat	After spray and after heat
77	bright rose			purple	bright rose	grav-pink	green to purple	purple
. E	not visible			purple	not visible	gray-pink	green	purple
31				purple		pink .	purple	purple
35	bright rose			r pink to green	peach	peach	yellow-green	pink to green
11	ı light		bluc	2-3 blue	blue	blue	lavender	ı lavender
22	2 blue		blue	3 turq. blue			turquoise	i bright blue
81			green to blue	purple		peach	lavender	purple
33	streak					•		•
	blue to peach			purple	pink	peach	pink-lavender	lavender-pink
17	peach			purple	pink	peach	lavender	lavender-peach
61	light streak		blue to purple	purple		peach	lavender	purple
20	blue		blue	2 purple		•	turquoise	purple
25				pink				pink
₹				pink				pink
56				bright pink				bright pink
27	•			pink	;			pink
25	light			purple	light			pink

TABLE IVA

AVERAGE R_F and R_s values of all spots resulting from the chromatography of each metabolite disubstituted with CPZ, 7-OH-CPZ, 7-OH-CPZSO and 7-OH-Nor $_s$ CPZSO in solvents I and III

The presence of one metabolite frequently alters the mobility of others. This is illustrated by the variability of R_F of the four standards seen in this table. It is for this reason the R_s values had to be specifically determined. When many components are present these R_s values remain fairly stable and the relative positions on a plate are constant. Experience will enable an investigator to recognize when there has been "leap frogging". For details, see text.

Standard	Color	R_F val	uc	R. val	ue to						
				CPZ		7.011	-CPZ	7.017-	CPZSO	7-011	Vor ₃ CPZSO
		11)	21)	11)	a1)	1/2	21)	11)	21)	11)	21)
3.Di-011-Pr											•
CPZ		0.34	o.So		•						
7-OH-CPZ		0.34	0.65								
7-OH-CPZSO		0.19	0.28								
7-OH-Nor ₂ CPZSO		0.37	0.11								
	pink	0,26	0.54	0.65	0.71	0.67	0.87	1.23	1.87	0.61	5.1
	pink	0.16	0.46	14.0	0.63	0.52	0.66	ດ.ຄົດ	1.62	0.49	4.2
	lavender	0.05	0.47	0.19	ი,ჩე	0.20	0.83	0.37	2.1	0.18	5.1
	lavender	0.38	0.45	1.05	0,61	1.07	0.75	1.9	1.8	1.05	4-4
	LUV and purple	o	0.64	O	0.83	O	1.03	O	2. I	U	6.3
	LUV and pink	O	0.29	O	0	O	0.5	O	0.0	O	2.7
	LUV and purple	O	0.11	O	0.15	O	0.19	O	0.38	O	0.98
	LUV and purple	O	O	O	O	Ç	O	O	O	O	0 .
7,8-Di-011 ₄ -CPZ											
CPZ		0.29	0.84								
7・0H‐CPΖ		0.30	0.68								
7-OH-CPZSO		0.18	0.27								
7-OH-NorgCPZSO		0.35	0.12								
	pink	0.2	0.64	ი,რვ	0.73	o,6	0.92	1.0.4	2.11	0.57	5-33
	purple	0.19	0.51	0,64	០.ប៊ន	0.62	0.81	1.03	1.9	0.55	4.7
	purple	0.19	0.40	0.61	0.47	0,64	0.6	1.07	1.42	0.58	3.6
	purple	0.19	O	0,64	0	0.62	O	1.04	0	0.54	0
	purple	0.07	0.51	0.26	0.61	0.25	0.74	0.42	1.77	0.20	4-45
	Long wave UV	0.2	0.16	0.64	0.23	0,62	0.28	1.1	0.65	0.55	1.6
	Long wave UV	0.2	ი,იი	0,66	80.0	0,63	0.09	1.07	0.27	0.56	0.65
	pink	0.32	0.55	1.25	0.65	1.3	0.8	1.8	1.9	0.97	4.6
	lavender	0.33	0.27	1.1	0.33	1.1	0.42	1.8	0.97	0,96	2 2.1
	LUV and 1 purple	O	0.73	O	0.79	C)	0.97	O	2.35	O	5-4
	LUV and I purple	O	0.31	O	0.34	C)	0.40	0	1.0	0	2.3
	LUV and 1 purple	O	0.12	O	0.13	O	0.16	O	0.4	O ,	1.0
	purple	O	O	O	O	O	O	O	O	O	D '
7,8-Di-OCII ₃ -CPZ											
CPZ		0.33	0.87								
7-OH-CPZ		0.33	0,65								
7-OH-CPZSO		0.21	0.28								
7-OH-Nor ₄ CPZSO		0.39	0.13								
	purple with 7-OH-CPZ		0,65	1,0	0.79	1.0	I.O	1.7	2.5	0.84	5.3
	purple ^{tt}	0.33	0.48	0.98	0.5.1	0.98	0.7	1.6	1.73	0.78	3.9
	pink	0.10	0.7	ი,66	0.76	0.67	0.88	1.1	2.35	0.51	5.7
	LUVIX	0.16	0.3	0.54	0.38	0.54	0.49	0.76	1.13	0.45	2.57
	LUV i x	0.0	0.32	2.47	0.35	3.4	0.51	4.27	1.1	2.18	2.3
		0	0,69	0	0,83	a	1.0	0	2.45	0	5.4
	purple 1 ×	0	0.31	0	0.38	0	0:44	0	1.1	0	2.4
3.7.Di-OH-CPZ	purple 1×	O	0.14	O	0.18	0	0.21	O	0.52	O	1.13
CPZ											
		0.37	0.83								
7-OH-CPZ		0.37	0.70								
7-OH-CPZSO 7-OH-NoraCPZSO		0.22	0.27								
7-Ott-Moracionao		0.38	0.11								

TABLE IVA (continued)

itanda r d	Color	R_F val	uv	Ra valt	ie to						
				CPZ		7.011-	-CPZ	7-01-1-	CPZSO	7-0H-N	ior _s CPZSC
		1D	21)	11)	21)	11)	<i>2</i> D	11)	21)	11)	21)
	purple with 7-OH-CPZ*	0.37	0,67	0,96	0.81	- 0,96	1.0	1.6	2.3	0.0	5.8
	purple 1×	0.11	0.52	0.29	0.63	0.3	0.78	0.5	1.9	0.2.1	4.58
	pink	0.25	0.76	0.68	0.96	0.64	1.1	1.1	2.7	0.55	6,36
	pink on 2 D SF	0.29	1.0	0.87	1.22	0.87	1.4	1.6	3.5	0.81	8.5
	LUV 1×	0	0.7	o	0.84	0	1.04	O	2.55	n	6.1
	LUV 1×	O	0.31	0	0.36	O	0.44	O	1.1	O	2.9
	LUV 1×	D	0.15	υ	0.18	0	0,22	O	0.55	C)	1.3
	LUV 1×	O	O	O	O	n	O	O	O	O	O
7-011-8-0CH ₃ -CPZ											
CPZ		0.33	0.83								
7-OH-CPZ		0.34	0.69								
7-OH-CPZSO		0.19	0.25								
7-OH-Nor ₂ CPZSO		0.38	0.11								
	purples	0.34	0.50	1.0	O,O	0.99	0.73	1.7	1.97	0.0	4.7
	plnk r×	0.25	0.41	o.ñg	დ,რ ვ	0,60	0.78	1.2	2.08	വ.ഗ്വ	4.9
	Iavender 1 ×	0.08	0.45	0.21	0.58	0.21	0.72	0.38	1.0	0,2	4.55
	LUV 1×	O	0,65	O	0.84	O	1,04	O	2.77	O	6.55
	LUV 1×	O	0.26	O	0.32	O	0.39	O	1.11	O	2.25
	LUV 1×	O	0.12	O	0.15	O	0.19	Ο.	0.5	O	1.18
	LUV 1×	O	O	O	O	O	O	O	O	O	O
2-C1-7-O11-8-OC11aPh											
CPZ		0.34	0.79								
7-OH-CPZ		0.34	0.64								
7-OH-CPZSO		0.34	0.25								
7-OH-NorgCPZSO		0.37	0.11								
	green" (both SF)	1.0	1.0	3.03	1.25	3.03	1,55	5.04	4.11	2.75	9.58
	pink	0.24	0.54	0.67	0.67	0.70	1.81	1.5	2.6	0.56	6,3
	pink 1 ×	0.34	0.50	1.07	0.58	1.07	0,68	1.8	1.88	0,96	4.29
	lavender and LUV	0.07	0.47	0.2.4	0.57	0.54	0.69	0.39	1.85	0.22	4.7
	LUV and lavender	0	0.69	D	0.81	0	0.98	0	2.65	O	6.11
	LUV and lavender	0	0.30	0	0.31	o	0,38	0	1.01	O	2.34
	lavender	0	0.11	0	0.13	0	0.16	0	0.43	0	1.0
11/0/11 //12	lavender	O	0.01	O	10,0	0	0,01	D	0.04	n	80.0
3.7-DI-OCH _a -CPZ CPZ			0.81								
		0,33	0.66								
7-OH-CPZ 7-OH-CPZSO		0.32	0.36								
7-OH-NoraCPZSO		0.35	0.12								
7-011-1101401 NSO	blue (partial with 7-OH)		0.75	0.98	0.9.1	1.0	1.1	z.8. ₄	2.66	0.92	5.9
	plac.	0.24	0.61	0.73	0.82	0.77	0.95	Z 14	2.3	0.7	4.7
	blue and LUV	0,02	0.15	0.05	0.23	0.05	0,25	01	0.03	0.05	1.4.4
	blue and LUV	o,ot	0.08	0	0.12	0	0.14	0	0,35	0	0.80
	lavender and LUV	0,08	0.47	0.25	0.59	0.27	0.71	0.47	1.7	0.25	3.7
	LUV 1×	0	0.59	0	0.8	0	0.80	0	2.4	0	5.38
	LUVIX	0	0.31	Ö	0.41	0	0.46	0	1.24	0	2.77
	LUV 1×	0.23	0.34	ი.ნი	0,46	0.71	0.51	1.35	1.38	ი.ნე	3.08
	LUVIX	0.11	0.36	0.33	0.49	0.35	0.54	0.65	1.48	1.33	3.31
2-Cl-7-Oll-to-PA-Ph				•••				••	,		
CPZ		0.33	0.83								
z-OH-CPZ		0.34	0.68								
7-OH-CPZSO		0.20	0.28								
7-Oh-NoraCPZSO		0.36	0.11								
	purples	0.95	თაენ	2.78	1.16	2.67	1.56	4.8	3.3	2.4	8.5
	purple	0.70	0.52	2.15	0.65	2.13			1.72	2.02	5.0.1
	purple	0.67	0.38	2.2	0.46	2.1	0.55	_	1.3	2.0	3.1
	LUVi×	o	0.66	0	0.8	O	0,96		2.0	U	5.2

TABLE IVA (continued)

Standard	Color	Rr vai	luc	R, val	ue to						
				CPZ		7∙ÒH-	-CPZ	7.011-	CPZS0	7-011-1	Vor ₃ CPZSC
		11)	21)	1D	aD	ıD	21)	<i>τ1</i>)	21)	11)	a1)
MILE MANAGEMENT PROPERTY FOR AN AND ANALYSIS OF THE PROPERTY O	LUVIX	0	0,53								
	LUVix	. 0	0.31	ο .	0.38	O	0.46	O	0.95	O	0.47
	LUVix	O	0.14	O	0.17	O	0.21	O	0.44	O	1.13
7-0CH _a =8-0H=CPZ											
CPZ		0.32	0.81								
7-OH-CPZ		0.33	0,66								
7-OH-CPZSO		0.19	0.26								
7-OH-NoraCPZSO		0.38	0.11								
	purple	0.34	0.39	1.0	0.42	0.99	0.51	1.7	1.3	10.0	3.04
	purple	0.31	0.22	0,66	0.35	0,66	0.44	1.29	1.09	0.61	2.5
	LUVix	O	0,22	O	0.34	O	0.43	0	1.06	O	2.43
	LUV :×	o	0.13	O	0.26	O	0.33	O	18.0	О	1.81
	pink x ×	0.21	0.45	0,90	ი,ნი	0.90	0.74	1.5	2.1	0.74	4.9
	purple 2 ×	0.11	0.45	0,30	0,60	0.30	0.74	0.5	2.0	0,26	5.4
7-011-8-0CH3-NoraCPZ	•										
CPZ		0.34	0.87								
7-OH-CPZ		n.3.4	0.72								
7-OH-CPZSO		0.19	0.27								
7-OH-Nor ₃ CPZSO		0.37	0.11								
	purplett	0,42	0.29	1.44	0.35	1.43	0.42	2.45	1.16	1.29	2.73
	LUVIX	80,0	0.53	0.23	0.61	0.23	0.78	0.42	2.08	0.2	5.17
	LUVix	O	0.67	0	0.77	O	0.98	0	0,6	O	6.5
	LUVix	O	0.28	O	0.33	O	0.41	o	I.I	O	2.8
	LUVix	o	0.11	O	0.13	O	0.16	O	0.43	O	1.1
	LUVix	n	0.01	0	0,01	O	0.01	O	0.03	O	80,0

[&]quot; Main spot.

TABLE IVB average R_F and R_t values of all spots resulting from the chromatography of each metabolite disubstituted with CPZ, 7-OH-CPZSO and 7-OH-NorgCPZSO $^{\circ}$ in solvents II and III

Standard	Calar	Rr va	luc	R, val	ue to						
				CPZ		7·0H·	-CPZ	7·0H-	crzso	7-011-1	Vor _a C <i>PZS</i> C
		1D	21)	ıD	2/)	iD	aD.	īD.	aD	11)	aD)
7-0H-8-0CH3-Nor1CI	?Z										
CPZ		0.32	0.72								
7.0H-CP%		0.27	ດ,ກ່ວ								
7-OH-CPZSO		0.17	0.23								
7-OH-NoraCPZSO		0.39	0.1								
7-OH-Nor _i CPZ		0.10	0.27								
	purple 1	0,1	0.19	0,34	0.26	0.40	0.32	0.65	0,86	0,28	1.4
	purple 2	O	0.15	O	0.23	0	0.26	O	0.72	O	0.95
	purple 3	ი,ი5	0,03	0.15	o'o't	0.19	0,05	0.3	0.11	0.13	0.15
2-Clto-AA-Ph											
CPZ		0.34	0.93								
7-OH-CPZ		0.30	0.83								
7-OH-CP2SO	•	0.17	0.28								
7-OH-NoraCPZSO		0.40	0.16								
	spot	0,86	1.0	2.5	1.07	2.84	1.2	4.9	3.5	2.2	8.7
2-C1-7-OH-10-Pa-PhS	O										
CPZ		0.35	0.83								
7-OH-CPZ		0.32	0.67								

(Continued on p. 286)

TABLE IVB (continued)

Standard	Color	$R_F va$	luc	R. val	w to						
				CPZ		7-011	-CPZ	7.011.	CPZSO	7-011-1	Nor ₃ CPZSC
		iD	al)	11)	21)	11)	21)	ıD	2 <i>1</i>)	1D	21)
7-OH-CPZSO		0.22	0.31								
7-OH-NoraCPZSO		0.4	0.13								
•	spot	0.63	0.83	1.8	0.97	1.97	1.2	2.8	2.6	1.5	6.1
2-Cl-10-PA-Ph											
CPZ		0.35	0.96								
7-011-CPZ		0.31	0.85								
7-OH-CPZSO		0.18	0.32								
7-OH-Nor ₁ CPZSO		0,39	0.15								
•	spot	0.79	1.0	2.24	1.05	2.5	1.18	4.27	3.11	2.0	6.6
2-Cl-10-PA-PhSO											
CPZ		0.31	0.78								
7-OH-CPZ		0.25	0,63								
7-OH-CPZSO		0.16	0.23								
7-OH-NoraCPZSO		0.33	0.13								
	spot	0.52	0.96	1.68	1.3	2.1	1.57	3,26	4.24	1.59	7.7
N-Ac-7-OAc-Nor1CPZS	O (purple)										
CPZ		0,30	0.84								
7-011-CPZ		0.25	0.67								
7-0H-CPZSO		0.17	0.2.1								
7-OH-Nor ₃ CPZSO		0.31	0.11								
	purple	0.81	0.79	2.74	0.9	2.2	1.15	4.8	3.3	2.6	7.1

^{*} See heading to Table IVA.

TABLE V

CHARACTERISTICS OF 11 DIHYDROXYPHENOTHIAZINES ON GAS CHROMATOGRAPHY WITH A FLAME IONIZATION DETECTOR

Inlet and detector temperatures are 265°. Temperature program column settings are 250° for 1 min, linear increase of 2.5°/min to 285° and hold. The N_2 rate is 40 ml/min, H_2 rate is 40 ml/min, and air flow-rate is 400 ml/min. Underlined figures (in °C) are the main peaks. For details, see text.

Compound	Standard p	repared of	7						
	July 6th, 1	971	July	7th, 197	7	July	7th, 19	7 1	
	Run on								
	July 6th, 1	971	July	7th, 197	7	July	15th, 1	771	••••••
23	<u> 263</u>	272	203		272	263		271	
2.4		274	264		27-1	263			
18		269	263		209	262		273 268	
19	264	270	264		209	263		270	
26	no	peak				264	273	27-1	
35	<u> 263</u>	265	259	264	266	259	263		
4	253	278	264	no ma	jor peak	273	276		
22	266 273		266	273	276	259	<u> 265</u>	266	272
							2	75	
17	no major	peak	26 t	no ma	jor peak	no m	ajor pu	ak	
20	268		263	265	268	26t	267		
32	no peak						no po	nks	

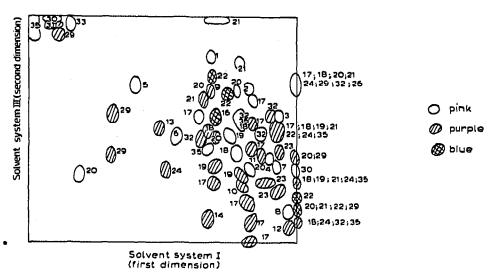


Fig. 1. This is a composite of all standards (25, 27, 28, and 34 excluded) run in Solvent I for the first dimension and Solvent III for the second multiple spots (e.g., compound number 35). 15 and 9 occupy the same space. The color of the spot after spraying with the Forrest spray is indicated by the key. Details are given in the text.

that the minor peak at $263^{\circ}-264^{\circ}$ is derived from 7,8 disubstituted 2-chlorophenothiazines, including one with no adduct at N-10, where indeed it is the major peak (35). Possibly then the other compounds (18), (19), (20), (23), (24), break down by loss of the N-10 adduct. In the case of (35) the minor peak at 259° could be derived by methylation and the peaks at 265° and 266° by loss of one molecule of H_2O .

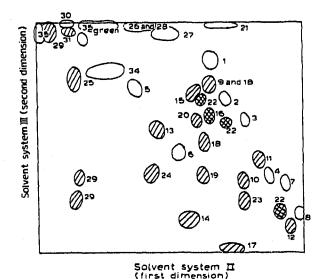


Fig. 2. A simplification of Fig. 1. Main, constant spots of each of the 35 standards studied in this report as run in Solvent II in the first dimension and Solvent III in the second dimension; color of spots are given in the key in Fig. 1.

TABLE VI

REWORKING OF $R_{\rm s}$ values to CPZ in Table IV

Groups 1-9 are R_{CP2} values of spots common to the selected CPZ derivatives. Group 10 gives the R_{CP2} values of spots unique to each derivative. Solvents I and III were used. Unique RcFZ 0.73-0.82 0.41-0.63 0.64-0.62 0.61-0.47 0.64-0.23 0.64-0.08 0.54-0.38 0.87-1.22 0.33-0.49 0.05 - 0.23(Group 2) 1.44-0.35 2.78-1.16 2.15-0.65 3.03 - 1.25Group 10 9.0- 6.0 9.0-0.1 0-69.0 2.47-0.35 2.2 -0.46 Group 9 0.98-0.54 1.1-0.33 Group 8 Group 7 0-0.001 10.0-0 9 9 0-0 9 Group 6 0-0.13 0-0.13 0-0.18 0-0.18 0-0.15 0-0.13 0-0.12 0-0.17 0-0.5 Group 5 0-0.34 0-0.38 0-0.34 11-0-0 0-0.32 0-0-33 0-0.31 0-0.34 0.4 Group 4 0-0.13 0-0.84 0-0.8 0-0.83 0-0.79 0-0.84 0-0.SI 0-0.77 0-0.8 69.0-61.0 0.25-0.59 0.21 - 0.580.23-0.61 0.24-0.57 0.29-0.63 0.3 -0.6 0.26-0.61 Growp 3 1.0-0.79 0.96-0.81 1.05-0.61 1.25-0.65 1.07-0.58 0.98-0.94 1.0 -0.42 0.0-0.0 Group 2 Common Repz 0.66-0.76 0.68-0.96 0.69-0.46 0.66-0.35 0.65-0.71 0.63-0.73 0.69-0.63 0.67-0.67 Group 1 Compound 32 35 20 21 22 13 7 5 8

Table VI is a reworking of the data in Table IV showing that there are evidently a number of compounds which appear as common derivatives of diphenolics. It is beyond the scope of this paper to propose what these derivatives are, but in so far as any of them may be found in biological sources, we propose to attempt identification.

Fig. I is a composite of all primary spots on TLC of pure standards available to us by the use of Solvent I for the first dimension, Solvent III for the second. The numbering of spots agrees with the numbering of compounds in the APPENDIX. Fig. 2 is a composite of all primary spots in TLC of the pure standards using Solvent II for the first dimension, Solvent III for the second. The improved separation is evident.

Fig. 3 is a composite of all still unidentified spots obtained from biological sources. Table VII gives their R_F values and Table VIII lists sources, percentage frequency of occurrence of each of 17 identified and 19 "unidentified" metabolites

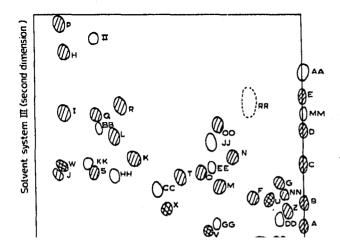


TABLE VII R_F values of unknown spots in solvent I for the first dimension and in solvent III for the second dimension

Compound	Solvent I	Solvent II	Compound	Solvent 1	Solvent III
	First dimension	Second dimension		First dimension	Second dimension
A	0	0,07	EE	0.34	0.33
В	0	81.0	\mathbf{v}	0.35	0.43
C	0	0.34	0	0.39	0.31
D	0	0.48	T	0.46	0.27
MM	0	0,56	X	0.51	0.15
E	O	0,64	CC	0.55	0.23
AA	0	0.74	K.	0.63	0.36
2	0.07	0.18	1313	0.68	0.61
NN	0.08	0.21	HH	0.71	0.28
ממ	0.09	0.14	L	0.71	0.47
G	0,09	0,20	Q	0.78	0.50
U	0.13	0.19	Q II	0.78	0,90
QQ	0.16	0	S	0.79	0.30
QQ F	0.19	0.20	KK	0.81	0.35
RR	0.21	0,61	1	0.89	0.57
PP	0.27		14	0.89	0,83
N	0.28	0.38	W	0.90	0.33
M	0.32	0,25	j	0.92	0,30
OO	0.32	0.51	j,	0.92	0.97
GG	0.33	0.09			•

TABLE VIII

PERCENTAGE OF IDENTIFIED AND UNIDENTIFIED SPOTS OCCURRING IN TLC PLATES FROM URINE ENTRACTS OF 35 CHRONIC SCHIZOPHRENICS

The following compounds appeared only once: G. L. 9 (pH 12); R. EE (pH 8.5); 5, 8, 1, 33 (pH 2); M. BB, H. and Q. after hydrolysis (pH 12); and 1, 4, 11, 0, 30 and 2, after hydrolysis (pH 8.5).

Compound	Non-hydrolyzed, pH 12(%)	Non-hydrolyzed, pH 8.5(%)	Non-hydrolyzed, pH 2(%)	Hydrolyzed, pH 12(%)	Hydrolyzed, pH 8.5(%)	Tentative identification
30	44	12	The second of th			
30 Mor P	26	30			35	24
. 3	68	Ö				•
33	50	9		64		
6	94	9 68			б	
1	100	41		41		
2	85	44				
4 ,	97	74		32		
8	44	15				
14	26	53		73	94	
AA	59	6				32
H	12	26		5.5	76	29
II	12	5 0		95	68	
5	21	2.4				
.7	15	0				
II	29	9		23		26-27
G		15		5.5	59	23
13				82	47	
δδ		79		59	94	17

TABLE VIII (continued)

Compound	Non-hydrolyzed, pH 12(%)	Non-hydrolyzed, pH 8.5(%)	Non-hydrolyzed, pH 2(%)	Hydrolyzed, pH 12(%)	Hydrolyzed, pH 8.5(%)	Tentative identification
U		47			29	22
10		50		59	32	
1.2		41		82	6	
31		' 6		18		
V		6		23		
PP		12		•	9	21
p .		6			29	
g		26		86	•	
OO .		12		t 8	1.5	18
O		15		3."	ő	10
W		6		•	•	
SS			\mathbf{s}_4			
TT			3.5			
UU			2.4			
E			•	ŋ		17
D _.				9		17
C				9		17

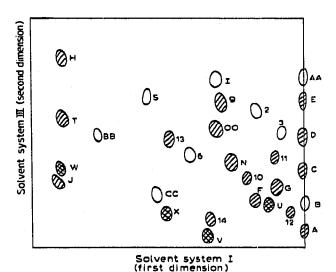


Fig. 4. Phenothiazine spots on TLC, which have been derived from fecal samples of patients on long term chlorpromazine therapy, as seen in Solvent I in the first dimension and Solvent III in the second dimension. Color of spots as in Fig. 1.

once evident. The major interest of clinicians has been in the blood and tissue levels of the unchanged drug. However, these metabolites are evidence of many cellular activities of sequences involving N-demethylation, N-oxidation, S-oxidation, oxidation of the side-chain, hydroxylation and O-methylation.

Our study supports the previously suggested^{4,6} presence of, and identifies for the first time, various dihydroxylated phenothiazine metabolites and their methoxylated analogs from biological samples from chronic schizophrenics on CPZ therapy only. Support for 3,7-dihydroxylation of CPZ in vitro had been made by Coccia AND

APPENDIX

C.A. numbering for phenothiazines. Hydrogen on positions 2, 3, 7, and 8 unless otherwise noted, CPZ = Chlorpromazine; PA = propionic acid; Pr = promazine; AA = acetic acid; Ph = phenothiazine; AC = acetyl.

No.	Abbreviation	2	3	5	7	8	10
1	CPZ	CI					(CH _a) _a -N(CH _a) _a
2	CPZSO	Či		>()			$(CH_2)_a - N(CH_a)_a$
3	Nor ₁ CPZ	Ci					(CH ₂) ₃ -NH(CH ₂)
4	Nor _i CPZSO	CI		>O			$(CH_2)_3 - NH(CH_2)$
փ 5 6	NorgCPZ	Cl					(CH _n) _n -NH _n
Ğ	Nor _g CPZSO	CI		->O			$(CH_2)_0 - NH_2$
7	CPZNO	Cl					$(CH_2)_a - N - (CH_3)_a$
							, O
8	CPZNOSO	ĊI		>O			$(CH_2)_3 - N - (CH_3)_3$
							*
9	7-OH-CPZ	C1			OH		$(CH_2)_a - N(CH_a)_a$
10	7-OH-CPZSO	CI		>C)	OH		$(CH_2)_3 - N(CH_{32})$
11	7-OH-Nor ₁ CPZ	CI			OH		$(CH_2)_3 - NH(CH_3)$
12	7-OH-NoriCPZSO	CI		>()	OH		$(CH_2)_3 - NH(CH_3)$
13	7-OH-NorgCPZ	Cl			OH		$(CH_2)_3 - NH_2$
1.4	7-OH-Nor ₂ CPZSO	CI		>O	OH		$(CH_2)_n - NH_2$
15	7-OCH _a -CPZ	Cl			OCH ₃		$(CH_2)_a - N(CH_a)_a$
16	8-OH-CPZ	CI				OH	$(CH_a)_a - N(CH_a)_a$
17	7,8-Di-OH-CPZ	CI			OH	ОН	$(CH_u)_{a}-N(CH_a)_{a}$
18	7-OH-8-OCH ₉ -CPZ	CI			OH	OCH ^a	$(CH_2)_3 - N(CH_3)_3$
10	7-OCH _a -8-OH-CPZ	Cl			OCH_{a}	OH	$(CH_a)_a$ -N $(CH_a)_a$
20	7,8-Di-OCH _a -CPZ	CI			OCH _a	OCH _a	$(CH_2)_3 - N(CH_3)_3$
21	3.7-Di-OH-CPZ	CI	OH	HO			$(CH_2)_3 - N(CH_3)_2$
22	3.7-Di-OCH ₅ -CPZ	CI	OCH _a		OCH _a		$(CH_2)_3 - N(CH_3)_3$
23	7-OH-8-OCH ₃ -Nor ₃ CPZ	CI			ОН	OCH _a	$(CH_g)_n - NH(CH_g)$
24	7-OH-8-OCH _a -Nor _a CPZ	Cl			OH	OCH _a	$(CH_g)_n - NH_g$
25	N-Ac-7-OAc-Nor ₁ CPZSO	CI		-> 0	CH _a COO		$(CH_g)_g - N(CH_gCOO)$
26	2-Cl-10-PA-Ph	CI					СН,СН,СООН
27	2-Cl-to-PA-PhSO	CI		>O			CH ₂ CH ₂ COOH
28	2-Cl-10-AA-Ph	CI			011		СН₄СООН
29	2-Cl-7-OH-10-PA-Ph	Cl			ОН		сн _а сн _а соон
30	2-Cl-Ph	CI			(311		[-]
31	2-Cl-7-OH-Ph	CI			OH	4511	H
32	2,3-Di-OH-Pr	e*1			OH	OH	$(CH_2)_3 - N(CH_3)_2$
33	2-Cl-PhSO 2-Cl-10-AA-PhSO	CI CI		->0			H
34	2-Cl-7-OH-8-OCH _a -Ph	CI		>O	OH	CYCLL	СН _а СООН
35	2-Ci=y-On=o-Ocn _a =i-n	CI			OH	OCH3	1-1

The fact that more than 75% of the administered CPZ has rarely been accounted for by the color tests in use^{3,4,7}, suggests that in some proportion of mole-

cules, the phenothiazine structure is lost. Forrest18 claimed to recover essentially 100% of radioactive CPZ as metabolites in urine and feces. Curry et al.20 suppose that the loss occurs in the upper gastrointestinal tract, a supposition we share, since some 30% of CPZ is destroyed by incubation for 1-2 h with gastric or duodenal washings, but less than 2% is lost by 2-h incubation with feces21. There is no positive evidence that degradation or rupture of the phenothiazine ring takes place in vivo, but the possibility cannot be excluded that CPZ has, in part, been converted to a metabolite or metabolites not responsive to the color tests in use. It will be necessary to perform experiments, with tagged CPZ to locate and identify the "lost CPZ".

ACKNOWLEDGEMENT

We are deeply indebted to Mr. JOHN BRADY for his devotion and attention to detail in assisting in much of this work.

REFERENCES

- 1 E. Usdin, Clin. Lab. Sci., 2 (1971) 347.
- 2 J. L. HIRTZ AND E. R. GARRETT, Analytical Metabolic Chemistry of Drugs, Marcel Dekker, New York, 1971, pp. 53-76.
 3 I. S. FORREST, D. E. GREEN AND B. P. UDALE, Proc. West. Pharmacol. Soc., 7 (1964) 35.
- 4 H. S. POSNER, R. CULPEN AND J. LEVINE, J. Pharmacol. Exp. Ther., 141 (1963) 377. 5 J. W. Daly and A. A. Manian, Biochem. Pharmacol., 16 (1967) 2131.
- 6 H. Goldenberg and B. Fishman, in W. Clark and J. del Giudice (Editors), Principles of Psychopharmacology, Academic Press, New York, 1970, Ch. 14.
 7 P. Turano and Wm. J. Turner, J. Chromatogr., 64 (1972) 347.
 8 J. E. March, D. Donato, P. Turano and Wm. J. Turner, J. Med., Clin. Exp., 3 (1972) 129.
 9 P. Turano, J. E. March, Wm. J. Turner and S. Merlis, J. Med., Clin. Exp., 3 (1972) 109.

- to Wm. J. Turner, P. Turano and J. E. March, Clin. Chem., 16 (1970) 916.
- 11 C. RODRIGUEZ AND D. E. JOHNSON, Life Sci., 5 (1966) 1283.
- 12 S. H. CURRY, Anal. Chem., 40 (1968) 115.
- 13 I. ZINGALIIS, J. Chromatogr., 31 (1967) 405.

- 13 I. ZINGALES, J. Chromatogr., 31 (1967) 455.
 14 I. ZINGALES, J. Chromatogr., 34 (1968) 44.
 15 M. B. Wechsler and I. S. Forrest, J. Neurochem., 4 (1959) 366.
 16 P. F. Coccia and W. W. Westerfeld, J. Pharmacol. Exp. Ther., 157 (1967) 446.
 17 J. W. Daly and A. A. Manian, Biochem. Pharmacol., 18 (1969) 1235.
 18 I. S. Forrest, Presented at The Chlorpromazine Metabolism Conference, National Institute of Mental Health, Bethesda, April 12, 1971.
 19 S. H. CURRY, A. D'MELLO AND G. P. MOULD, Brit. J. Pharmacol., 42 (1971) 403.
- 20 J. E. MARCH AND WM. J. TURNER, unpublished data.